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Abstract
We examine a method used by Zygelman B et al (2004 Phys. Rev. A 69 042715)
to evaluate the transition matrix for rearrangement in atom–antihydrogen
scattering. We make a small change to the expression used previously and
generalize it to all kinds of rearrangement processes.

PACS numbers: 34.50.−s, 36.10.−k

1. Introduction

The recent production of low-temperature antihydrogen in the ATHENA [1] and ATRAP
[2] experiments at CERN has stimulated considerable interest in atom–antiatom interactions.
The low-temperature scattering of atoms and antiatoms offers several challenges that are
qualitatively new compared to atom–atom scattering. One such is the strong nuclear
force, which not only causes annihilation, but also changes the elastic scattering cross
sections [3–6].

Another challenge is rearrangement processes, i.e. processes where the nucleus,
antinucleus and in some cases a number of electrons form one bound system, while the
positron from the antihydrogen and the remaining electrons form another bound system. In
what follows, we shall refer to these as the heavy and light subsystems. Rearrangement
processes are particularly difficult to treat theoretically for atom–antiatom systems having a
critical distance, i.e. an internuclear distance below which the leptons are no longer bound to
the nuclei. This is for instance the case for the hydrogen–antihydrogen system. For systems
with a critical distance the rearrangement cross section cannot be calculated accurately within
the Born–Oppenheimer approximation [5, 7]. Instead non-adiabatic methods such as close-
coupling [8], Kohn variational [9] or optical potential [10] must be used.
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Helium–antihydrogen is an example of a system that does not suffer from this
complication. While the validity of the Born–Oppenheimer approximation still cannot be
taken for granted, it is reasonable that it will give a fair approximation to the correct
rearrangement cross section. Moreover, it can be systematically improved by including
non-adiabatic couplings to other Born–Oppenheimer states. In this case, the distorted wave
Born approximation may be invoked to derive a T-matrix method [10, 11] to evaluate the
rearrangement cross section. The rearrangement cross section is then given by the expression

σ rearr = (2π)4

k2
i

|Tfi|2, (1)

where ki is the collision wave vector and Tfi is the transition matrix (T-matrix). In [10], a
particularly useful expression for the T-matrix in the form of an energy difference multiplied by
an overlap matrix element was used. This form, which we shall call the overlap approximation,
considerably simplifies the numerical evaluation of the T-matrix. It is important to give it a
firm theoretical foundation. Thus, in this paper we make a formal derivation of the overlap
approximation and consider its possible generalizations.

Atomic units are used throughout the paper.

2. Coordinates

We consider antihydrogen (H̄) colliding with an atom with N electrons. The system rearranges
into a light system consisting of the positron and n electrons (for n = 0 only a positron, n = 1
positronium and n = 2 e+e−e−) and a heavy system consisting of the atomic nucleus, the
antiproton and N − n electrons. Suppose that the atomic nucleus has mass mA and charge ZA

and the mass of the antiproton is mp. Let RA and RB be the coordinates of the nucleus and the
antiproton, respectively, with respect to the non-rotating coordinate axes in an inertial frame
which can most conveniently be taken to be the centre-of-mass frame. Let the coordinates
of the N electrons and positron with respect to these axes be r̃i (i = 1, . . . , N ) and r̃N+1.
We assume that the centre-of-mass motion has been separated out and introduce internal
coordinates of Jacobi type:

R = RA − RB (2)

ri = r̃i − 1

mp + mA + i − 1


mARA + mpRB +

i−1∑
j=1

r̃j


 i = 1, . . . , N − n (3)

ρ = 1

n + 1

N+1∑
i=N−n+1

r̃i − 1

mA + mp + N − n


mARA + mpRB +

N−n∑
j=1

r̃j


 (4)

si = r̃i+N−n+1 − 1

i

i+N−n∑
j=N−n+1

r̃j i = 1, . . . , n. (5)

Here, R is the internuclear separation, ri are Jacobi coordinates of the electrons in the heavy
subsystem, ρ connects the centres of mass of the heavy and light systems and si are Jacobi
coordinates of the electrons and the positron in the light subsystem. We denote this set of
internal coordinates collectively as S = {R, ri ,ρ, si}. In terms of these coordinates, the
kinetic energy operator takes the simple form

T̂ = − 1

2µN
�R −

N−n∑
i=1

1

2µi

�ri
− 1

2µf
�ρ −

n∑
i=1

1

2νi

�si
. (6)
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Here, the different reduced masses are µN = mpmA/(mp +mA), µi = (mA +mp + i−1)/(mA +
mp + i), µf = (mA + mp + N − n)(n + 1)/(mA + mp + N + 1) and νi = i/(i + 1).

The coordinates S are with respect to the non-rotating axes. We next make the
transformation into the reference frame following the rotation of the atom–antiatom system,
S → S̄ = {R, r̄i , ρ̄, s̄i}. This transformation is carried out by applying a proper orthogonal
transformation to the Cartesian components of ri , si and ρ,

x̄

ȳ

z̄


 = U


x

y

z


 , (7)

where {x̄, ȳ, z̄} and {x, y, x} are the Cartesian components of the coordinates of any lepton in
the rotating and non-rotating frame, respectively. Following Kołos and Wolniewicz [12] we
chose the following form for this transformation:

U =

cos θ cos φ cos θ sin φ −sin θ

−sin φ cos φ 0
sin θ cos φ sin θ sin φ cos θ


 , (8)

where θ and φ are the spherical polar angles of R, with respect to the non-rotating axes.
This gives a coordinate system rotating with the nuclei and with the z̄ axis in the direction
of R. The terms in (6) involving �ri

, �si
and �ρ are the same irrespective of whether the

partial derivatives are in terms of members of S or S̄. This is because the transformation (7) is
orthogonal and the nuclear coordinates are the same in S and S̄. However, extra terms occur
in the partial derivatives with respect to the nuclear coordinates θ and φ, keeping the other
members of S constant, when these derivatives are expressed in terms of partial derivatives
with respect to members of the set S̄. This is because a different set of variables is kept
constant in each differentiation. Under the transformation from S to S̄, partial derivatives with
respect to R, θ and φ transform as

∂

∂R
→ ∂

∂R
, (9)

∂

∂θ
→ ∂

∂θ
− iL̂y, (10)

∂

∂φ
→ ∂

∂φ
− i cos θL̂z + i sin θL̂x. (11)

Here, L̂α is the total angular momentum along the α axis of all leptons in terms of the relative
coordinates introduced in (3)–(5) and transformed to the rotating system, i.e.,

L̂ = −i
N−n∑
i=1

r̄i × ∇r̄i
− iρ̄ × ∇ρ̄ − i

n∑
i=1

s̄i × ∇s̄i
. (12)

The first term on the right-hand side of (6) then becomes in the set of coordinates S̄

− 1

2µN

{
∂2

∂R2
+

2

R

∂

∂R
− Ĵ2

R2
− 1

R2

(
L̂2

x + L̂2
y + cot2 θL̂2

z + 2i
cot θ

sin θ
L̂z

∂

∂φ

)

+ L̂+
1

R2

(
− ∂

∂θ
+ cot θL̂z +

i

sin θ

∂

∂φ

)
+ L̂−

1

R2

(
∂

∂θ
+ cot θL̂z +

i

sin θ

∂

∂φ

)}
,

(13)
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where Ĵ is the orbital angular momentum operator of the nuclei and L̂± = L̂x ± iL̂y . The
extra terms are centrifugal and Coriolis terms resulting from the transformation to axes that
rotate with the nuclei.

The Jacobi set of coordinates introduced above has the advantage that the kinetic energy
operator contains no mass polarization terms, i.e. terms which couple derivatives with respect
to coordinates of different particles. These are, however, usually not the coordinates used in
molecular calculations based on the Born–Oppenheimer approximation. We now introduce a
different set of coordinates T = {R, ti}, (i = 1, . . . , N + 1), more suitable for the molecule-
like entrance channel. The N + 1 leptonic coordinates ti are with respect to non-rotating axes
but with origin at the geometrical centre of the nucleus and antinucleus,

ti = r̃i − 1

2
(RA + RB)

=




ri +
i−1∑
j=1

1

mA + mp + j
rj − 1

2

mp − mA

mp + mA
R for i � N − n

ρ +
N−n∑
j=1

1

mA + mp + j
rj +

i − N + n − 1

i − N + n
si−N+n−1

−
n∑

j=i−N+n

1

j + 1
sj − 1

2

mp − mA

mp + mA
R for i > N − n.

(14)

Inverting these relations one obtains

ri = ti − 1

mA + mp + i − 1


mA − mp

2
R +

i−1∑
j=1

tj


 , i = 1, . . . , N − n, (15)

ρ = 1

n + 1

n+1∑
i=1

ti+N−n − 1

mA + mp + N − n

(
mA − mp

2
R +

N−n∑
i=1

ti

)
, (16)

si = ti+N−n+1 − 1

i

i∑
j=1

tj+N−n, i = 1, . . . , n. (17)

We can also express the kinetic energy operators in the set of coordinates T ,

T̂ = − 1

2µN
�R − 1

2µa

N+1∑
i=1

∇R · ∇ti
− 1

8µN

N+1∑
i=1

�ti
− 1

4µN

N+1∑
i=1

N+1∑
j=i+1

∇ti
· ∇tj

− 1

2

N+1∑
i=1

�ti

(18)

where µa = mAmp/(mp − mA). The coordinates T can be transformed to coordinates T̄ with
respect to the rotating axes through the transformation given by (8). The first term on the
right-hand side of (18) will be transformed into a form similar to (13), while the second term
in (18) will give rise to additional terms.

In order to describe the rearrangement channel we require a set of coordinates U =
{R, ti ,ρ, sj } (i = 1, . . . , N − n, j = 1, . . . , n), i.e., with the coordinates of the electrons in
the heavy subsystem centred at the geometrical centre of the nucleus and antinucleus, while
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Jacobi coordinates are used for the light subsystem. In U , the kinetic energy operator is

T̂ = − 1

2µN
�R − 1

2µa

N−n∑
i=1

∇R · ∇ti
− 1

8µN

N−n∑
i=1

�ti

− 1

4µN

N−n∑
i=1

N−n∑
j=i+1

∇ti
· ∇tj

− 1

2

N−n∑
i=1

�ti
− 1

2µf
�ρ −

n∑
i=1

1

2νi

�si
. (19)

Similarly to above, a rotating system Ū can be defined by the transformation (8). It is important
to realize that even though the coordinates ti (i = 1, . . . , N − n) represent the same vectors
in the sets of coordinates T and U , their partial derivatives are different, since they are taken
with different sets of coordinates held constant. Below we shall use the notation |U or |T to
indicate in which set of coordinates a given partial derivative is evaluated. Using the chain
rule we then obtain the relations

N−n∑
i=1

�ti
|T =

N−n∑
i=1

�ti
|U +

N − n

(mA + mp + N − n)2
�ρ|U − 2

mA + mp + N − n

N−n∑
i=1

∇ti
·∇ρ|U ,

(20)

N+1∑
i=N−n+1

�ti
|T = 1

n + 1
�ρ|U +

n∑
i=1

1

νi

�si
|U . (21)

This equation gives a relation between the kinetic energy terms of the leptons in the initial and
final states. The same relations hold between the rotating systems T̄ and Ū .

3. Application to the T-matrix elements

We now derive a formula for the rearrangement T-matrix. The total Hamiltonian of the system
is

Ĥ = T̂ + Vheavy + Vlight + Vex, (22)

where the kinetic energy operator may be expressed in any of the sets of coordinates introduced
in the previous section. The potentials internal to the heavy and light systems are

Vheavy =
N−n∑
i=1

ZA

|r̃i − RA| −
N−n∑
i=1

1

|r̃i − RB| +
N−n∑
i=1

N−n∑
j=i+1

1

|r̃i − r̃j | (23)

Vlight = −
N∑

i=N−n+1

1

|r̃i − r̃N+1| +
N∑

i=N−n+1

N∑
j=i+1

1

|r̃i − r̃j | . (24)

The potential connecting the fragments is

Vex =
N∑

i=N−n+1

ZA

|r̃i − RA| −
N∑

i=N−n+1

1

|r̃i − RB| +
N−n∑
i=1

N∑
j=N−n+1

1

|r̃i − r̃j |

− ZA

|r̃N+1 − RA| +
1

|r̃N+1 − RB| −
N−n∑
i=1

1

|r̃i − r̃N+1| . (25)

We assume that the wavefunctions of the atom in the initial state, as well as the
wavefunctions of the fragments in the final state, are antisymmetrized with respect to the
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internal coordinates of the electrons they contain. It still remains to antisymmetrize the
final-state wavefunction with respect to electrons in different fragments. Allowing for this
antisymmetrization, the T-matrix for rearrangement takes the form [13]

Tfi =
√

N !

n!(N − n)!

1

N !

∑
P̂

p〈P̂	f|P̂ (Vex − VCoul)P̂
−1|
ki〉, (26)

where 
ki is the exact scattering wavefunction for the scattering of H̄ by the atom under
consideration and 	f is the wavefunction representing the rearrangement channel we are
considering. The sum runs over all permutations P̂ of the electrons, and p = ±1 according
to whether P̂ is an even or odd permutation. The wavefunction 	f is an eigenfunction of
Ĥ0 = Ĥ − Vex + VCoul, with outgoing wave boundary condition. VCoul is of the form

VCoul = (1 − n)(ZA − 1 − N + n)

ρ
. (27)

It is the Coulombic potential for charges ZA − 1 − N + n and 1 − n, a distance ρ apart. VCoul

is included in Ĥ0 so that if the charges on the fragments are both non-zero the continuum part
of 	f has the asymptotic form of the appropriate Coulomb wave, as in the Coulomb–Born
approximation.

Using the properties of the permutation operator P̂ , the expression (26) can be rewritten
as

Tfi =
√

N !

n!(N − n)!

1

N !

∑
P̂

p〈	f|(Vex − VCoul)P̂ |
ki〉. (28)

Furthermore, since P̂
ki = p
ki , we obtain

Tfi =
√

N !

n!(N − n)!
〈	f|Vex − VCoul|
ki〉. (29)

Thus, antisymmetrization of the electrons just leads to multiplication by a numerical factor,
and no additional matrix elements need to be evaluated.

We choose to use the set of coordinates T̄ for the initial state, 
ki , and the set of coordinates
Ū for the rearrangement state 	f . The exact wavefunctions for initial and final states have
to be calculated using all terms of the kinetic energy operator in the forms (18) and (19),
respectively, along with the additional terms introduced by transformation into the rotating
system. This is a very complicated task even for small systems. The problem is considerably
simplified by using the distorted wave Born approximation, in which the T-matrix may be
evaluated using the Born–Oppenheimer approximation to the initial state 
ki [10, 11]. To
this end, we introduce the Born–Oppenheimer Hamiltonians of the initial and the final states,
expressed in the sets of coordinates T̄ and Ū respectively,

Ĥ BO
i = −1

2

N+1∑
i=1

�t̄i

∣∣∣∣
T̄

+ Vheavy + Vlight + Vex, (30)

Ĥ BO
f = −1

2

N−n∑
i=1

�t̄i

∣∣∣∣
Ū

+ Vheavy. (31)

We define the usual eigenfunctions and eigenvalues of the Born–Oppenheimer Hamiltonians
with a parametric dependence on the nuclear coordinates. If the coordinates of the leptons are
considered in the rotating system, these eigenfunctions and eigenvalues depend only on R,
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Ĥ BO
i ψBO

α (R; t̄1, . . . , t̄N+1) = εα
i (R)ψBO

α (R; t̄1, . . . , t̄N+1), (32)

Ĥ BO
f ωBO

α (R; t̄1, . . . , t̄N−n) = εα
f (R)ωBO

α (R; t̄1, . . . , t̄N−n). (33)

The Born–Oppenheimer Hamiltonians can be used to rewrite the T-matrix,

Tfi =
√

N !

n!(N − n)!
〈	f|Ĥ BO

i +
1

2

N+1∑
i=1

�t̄i
|T̄ − Vlight − Ĥ BO

f +
1

2

N−n∑
i=1

�t̄i
|Ū − VCoul|
ki〉.

(34)

Using relations (20) and (21) for the kinetic terms this becomes

Tfi =
√

N !

n!(N − n)!
〈	f|Ĥ BO

i +
n∑

i=1

1

2νi

�s̄i
|Ū − Vlight

+
1

2

(
1

n + 1
+

N − n

(mA + mp + N − n)2

)
�ρ̄|Ū

− 1

mA + mp + N − n

N−n∑
i=1

∇t̄i
· ∇ρ̄|Ū − Ĥ BO

f − VCoul|
ki〉. (35)

Note that even though the Born–Oppenheimer Hamiltonians are used in this expression, we
still have not invoked the Born–Oppenheimer approximation, and (35) is therefore exact. We
can, still without invoking any approximation, simplify this expression by noting that Ĥ0

separates into two parts,

Ĥ0 = Ĥheavy + Ĥlight, (36)

where in the set of coordinates U , using (19),

Ĥheavy = Ĥ BO
f − 1

2µN
�R|U − 1

2µa

N−n∑
i=1

∇R ·∇ti
|U − 1

8µN

N−n∑
i=1

�ti
|U

− 1

4µN

N−n∑
i=1

N−n∑
j=i+1

∇ti
· ∇tj

|U , (37)

Ĥlight = − 1

2µf
�ρ|U −

n∑
i=1

1

2νi

�si
|U + Vlight + VCoul. (38)

Since Vlight depends only on the coordinates si , the final-state wavefunction separates as

	f(R, t̄1, . . . , t̄N−n, si ,ρ) = φnf (si )Flf (kfρ)Ylfmf (�ρ)ϒvf ,Jf ,Mf (R, t̄1, . . . , t̄N−n). (39)

Here, φnf is the wavefunction of the light subsystem in internal state, nf with energy Enf .
The relative momentum of the light and heavy subsystems is kf , and lf,mf their relative
angular momentum. Flf is a spherical Bessel function unless VCoul �= 0, in which case it
is a Coulomb function. The wavefunction ϒvf ,Jf ,Mf represents the final state of the heavy
system with total orbital angular momentum Jf,Mf , with energy Evf ,Jf . Note that we have
expressed the light subsystem in terms of the non-rotating coordinates si and ρ, while the
coordinates of the electrons in the heavy subsystem are expressed in the rotating reference
frame. This poses no problem since the Laplacians in (31), (35) and (38) are unchanged
by the transformation between the non-rotating and rotating reference frames. On the other
hand, the term proportional to

∑N−n
i=1 ∇t̄i

·∇ρ̄ in (35) will change when ρ, but not t̄i , is expressed
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in the non-rotating reference frame. We now introduce an approximation by omitting this term,
which is always small since the nuclear and proton masses are very large compared to the
electron mass, and vanishes if N = n, as, for example, in the case of protonium formation in
hydrogen–antihydrogen scattering. With these considerations, the T-matrix becomes

Tfi =
√

N !

n!(N − n)!
〈	f|Ĥ BO

i − Enf −
(

1

n + 1
+

N − n

(mA + mp + N − n)2

)
k2

f

2
− Ĥ BO

f |
ki〉.

(40)

The full spectrum of Born–Oppenheimer eigenfunctions given by (30) and (31) forms a
complete set of states for the leptonic part of the problem. It is therefore, in principle, possible
to expand the exact molecular eigenfunctions in terms of the Born–Oppenheimer states as [14]


ki(R, t̄i ) =
∑

α

χα
ki,Ji,Mi

(R)ψBO
α (R; t̄i ), (41)

where ki is the relative momentum, and Ji,Mi the relative angular momentum, of the colliding
atom and antiatom in the initial state. The functions χα

ki,Ji,Mi
are solutions to an infinite set of

Schrödinger equations for nuclear motion coupled by the non-diagonal matrix elements of the
operator in (18). Similarly, the wavefunction of the heavy subsystem of the final state can be
written as

ϒvf ,Jf ,Mf (R, t̄1, . . . , t̄N−n) =
∑

α

ξα
vf ,Jf ,Mf

(R)ωBO
α (R; t̄1, . . . , t̄N−n), (42)

where ξα
vf ,Jf ,Mf

are solutions to a set of coupled equations for the motion of nucleus and
antinucleus in the final state. If we now insert the wavefunctions defined in (39) and (41), we
can rewrite the T-matrix as a sum of overlap integrals multiplied by an energy difference,

Tfi =
√

N !

n!(N − n)!

∑
α,β

∫
dR

[
εα

i (R)− ε
β

f (R)−
(

1

n + 1
+

N − n

(mA + mp + N + n)2

)
k2

f

2
− Enf

]

× 〈
φnf (si )Flf (kfρ)Ylfmf (�ρ)ξ

β

vf ,Jf ,Mf
(R)ωBO

β (R; t̄i )
∣∣χα

ki,Ji,Mi
(R)ψBO

α (R; t̄i )
〉
.

(43)

In this and the following expressions 〈· · ·〉 signifies integration over the leptonic coordinates
only.

In the Born–Oppenheimer approximation, the couplings between different Born–
Oppenheimer states are neglected, and hence the sums in (41) and (42) reduce to single
terms, for instance scattering between the lowest adiabatic states α = β = 0, which gives

Tfi =
√

N !

n!(N − n)!

∫
ξ 0
vf ,Jf ,Mf

(R)tfi(R)χ0
ki,Ji,Mi

(R) dR, (44)

tfi(R) =
[
ε0

i (R) − ε0
f (R) −

(
1

n + 1
+

N − n

(mA + mp + N + n)2

)
k2

f

2
− Enf

]
× 〈

φnf (si )Flf (kfρ)Ylfmf (�ρ)ωBO
0 (R; t̄i )

∣∣ψBO
0 (R; t̄i )

〉
. (45)

This is our final expression for the rearrangement T-matrix. The matrix element (45) is
considerably easier than the original expression (29) to evaluate numerically since it does
not involve any Coulombic terms. Thus, if the eigenfunctions and eigenvalues of the Born–
Oppenheimer approximation (32) and (33) have been calculated, it is relatively easy to obtain
the corresponding T-matrix. When the matrix element (45) or (29) is evaluated numerically, the
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initial and final states must be represented in the same coordinate system. This requires that the
final state is expressed in rotating coordinates, which creates additional complications if lf �= 0
or if the light fragment has non-zero internal angular momentum. In this case, the angular
variables will include dependences on the nuclear coordinates through the transformation (8).
Normally, one will also take the origin of ρ to be the centre of mass of the nuclei, rather than
the centre of mass of the entire heavy subsystem including N − n electrons. If N �= n, this
introduces an error, which, however, should be small.

4. Discussion

In this paper, we have expressed the kinetic operator, T̂ , in terms of several systems of
coordinates. One would like to be able to write it in a form that applies in all coordinate
systems, in accordance with Einstein’s principle of general covariance. This can be done by
expressing T̂ in the form

T̂ = −(1/2)habDaDb. (46)

By the Einstein summation convention, a and b are summed over all the 3N + 6 coordinates
used to describe the internal motion of the system. hab are the components of a type (2, 0)
tensor field. If the coordinates S are all Cartesian, hab is diagonal with diagonal elements
associated with R, 1/µN, with ri , 1/µi , etc. Da is the covariant derivative with respect to the
ath coordinate.

We did make use of T̂ in this form but found the associated transformation operations
between coordinates more cumbersome than using the chain rule. It is possible that this
difficulty could be avoided by making use of a suitable mathematics software package.

We have provided a rigorous derivation and generalization of the expression for the
leptonic T-matrix used in [10]. If equation (43) is used to calculate Tfi for hydrogen–
antihydrogen scattering for which N = n = 1, the third term in the square brackets is
− 1

4k2
f . This differs slightly from the corresponding term in the treatment in [10] which is

− k2
f

2µf
, where µf = 2mp

(mp+1)
as mA = mp in this case.

The reason for this difference is as follows. If the kinetic energy operator in Ĥ BO
i is taken

to include the extra terms

− 1

4mp

2∑
i=1

�t̄i
|T̄ − 1

2mp
∇t̄1 · ∇t̄2 |T̄ , (47)

from equation (18), in addition to the kinetic energy term in equation (30), the coefficient of
the term in �ρ̄|Ū in equation (35) becomes 1

2µf
. As a consequence of this the term in equation

(43) involving kf becomes − k2
f

2µf
instead of − k2

f
4 .

The difference between these terms is very small, ∼0.05%. If Tfi is evaluated using
equations (44) and (45), the inclusion of the terms in (47) in Ĥ BO

i results in a slight improvement
in accuracy as the effect of these terms is incorporated directly into the eigenvalues and
eigenfunctions in equation (32). They thus do not have to be included in the terms that couple
the eigenfunctions when evaluating Tfi using equation (43). However, the terms in (47) are
not normally included in the Hamiltonian in the Born–Oppenheimer approximation [11, 12].

We have shown that the overlap approximation can be generalized to all kinds of
rearrangement processes, including those in which the interaction between the final fragments
is of the Coulomb form asymptotically. The only further approximations introduced
beyond the distorted wave Born approximation are the application of the Born–Oppenheimer
approximation to the description of the fragment in the final channel that contains the nuclei
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and the location of the centre of mass of the other fragment at the centre of mass of the nuclei.
The effect of these approximations can be expected to be small.

Moreover, equation (43) makes it possible to evaluate the T-matrix when the distorted
wave Born approximation has been extended to include coupled Born–Oppenheimer states of
the atom + antihydrogen in the elastic channel and the fragment that contains the nuclei in
the rearrangement channel. We are examining the accuracy of the overlap approximation by
evaluating cross sections for a number of rearrangement processes in helium–antihydrogen
scattering [15] using both equation (29) and equations (44) and (45).
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